Near-Optimal Online Algorithms for Prize-Collecting Steiner Problems
نویسندگان
چکیده
In this paper, we give the first online algorithms with a polylogarithmic competitive ratio for the node-weighted prize-collecting Steiner tree and Steiner forest problems. The competitive ratios are optimal up to logarithmic factors. In fact, we give a generic technique for reducing online prize-collecting Steiner problems to the fractional version of their non-prize-collecting counterparts losing only a logarithmic factor in the competitive ratio. This reduction is agnostic to the cost model (edge-weighted or node-weighted) of the input graph and applies to a wide class of network design problems including Steiner tree, Steiner forest, group Steiner tree, and group Steiner forest. Consequently, we also give the first online algorithms for the edge-weighted prize-collecting group Steiner tree and group Steiner forest problems with a poly-logarithmic competitive ratio, since corresponding fractional guarantees for the non-prize-collecting variants of these problems were previously known. For the most fundamental problem in this class, namely the prize-collecting Steiner tree problem, we further improve our results. For the node-weighted prize-collecting Steiner tree problem, we use the generic reduction but improve the best known online Steiner tree result from Naor et al [14] on two counts. We improve the competitive ratio by a logarithmic factor to make it optimal (up to constants), and also give a new dual-fitting analysis showing that the competitive ratio holds against the fractional optimum. This result employs a new technique that we call dual averaging which we hope will be useful for other dual-fitting analyses as well. For the edge-weighted prize-collecting Steiner tree problem, we match the optimal (up to constants) competitive ratio of O(logn) that was previously achieved by Qian and Williamson [15] but provide a substantially simpler
منابع مشابه
A 4-Approximation Algorithm for k-Prize Collecting Steiner Tree Problems
This paper studies a 4-approximation algorithm for k-prize collecting Steiner tree problems. This problem generalizes both k-minimum spanning tree problems and prize collecting Steiner tree problems. Our proposed algorithm employs two 2-approximation algorithms for k-minimum spanning tree problems and prize collecting Steiner tree problems. Also our algorithm framework can be applied to a speci...
متن کاملPrize-Collecting Steiner Tree and Forest in Planar Graphs
We obtain polynomial-time approximation-preserving reductions (up to a factor of 1+ε) from the prizecollecting Steiner tree and prize-collecting Steiner forest problems in planar graphs to the corresponding problems in graphs of bounded treewidth. We also give an exact algorithm for the prize-collecting Steiner tree problem that runs in polynomial time for graphs of bounded treewidth. This, com...
متن کاملPrize-Collecting Steiner Networks via Iterative Rounding
In this paper we design an iterative rounding approach for the classic prize-collecting Steiner forest problem and more generally the prize-collecting survivable Steiner network design problem. We show as an structural result that in each iteration of our algorithm there is an LP variable in a basic feasible solution which is at least one-third-integral resulting a 3-approximation algorithm for...
متن کاملAn O(logn)-Competitive Algorithm for Online Constrained Forest Problems
In the generalized Steiner tree problem, we find a minimumcost set of edges to connect a given set of source-sink pairs. In the online version of this problem, the source-sink pairs arrive over time. Agrawal, Klein, and Ravi [1] give a 2-approximation algorithm for the offline problem; Berman and Coulston [3] give an O(logn)-competitive algorithm for the online problem. Goemans and Williamson [...
متن کاملA note on Johnson, Minkoff and Phillips' algorithm for the Prize-Collecting Steiner Tree Problem
The primal-dual scheme has been used to provide approximation algorithms for many problems. Goemans and Williamson gave a (2− 1 n−1 )-approximation for the Prize-Collecting Steiner Tree Problem that runs in O(n logn) time. Johnson, Minkoff and Phillips proposed a faster implementation of Goemans and Williamson’s algorithm. We give a proof that the approximation ratio of this implementation is e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014